Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N.N'$)holmium(III)

Eny Kusrini,^a Muhammad Idiris Saleh,^a Reza Kia^b and Hoong-Kun Fun^b*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 16 June 2008; accepted 4 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.071; data-to-parameter ratio = 19.5.

In the title compound, $[Ho(NO_3)_3(C_{12}H_8N_2)_2]$, the tencoordinate Ho^{III} ion is chelated by four N atoms from two phenanthroline (phen) ligands and six O atoms from three bidentate nitrate groups. The environment around the Ho atom can be described as a distorted bicapped square antiprism. Two phenanthroline ligands form a dihedral angle of 43.72 (13)°. Short intermolecular distances between the centroids of the six-membered rings [3.6887 (14)-3.8374 (16) Å] indicate the existence of $\pi - \pi$ interactions, which link the molecules into stacks extended in the $[10\overline{1}]$ direction. The crystal packing is further stabilized by weak intermolecular $C-H \cdots O$ hydrogen bonds.

Related literature

For related literature on hydrogen bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related literature, see, for example: Frechette et al. (1992); Lin & Feng (2003); Zheng et al. (2001); Antsyshkina et al. (2002); Sadikov et al. (2006a,b); Rybakov et al. (1991); Wei et al. (2002); Kepert et al. (1996); Liu et al. (2007); Xu et al., (2005).

Experimental

Crystal data

$[Ho(NO_3)_3(C_{12}H_8N_2)_2]$	V = 2487.10 (7) Å ³
$M_r = 711.37$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 11.0049 (2) Å	$\mu = 3.25 \text{ mm}^{-1}$
b = 17.7710 (3) Å	T = 100.0 (1) K
c = 12.9332 (2) Å	$0.34 \times 0.19 \times 0.11$
$\beta = 100.483 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.548, \ T_{\max} = 0.727$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	371 parameters
$wR(F^2) = 0.070$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 3.31 \text{ e } \text{\AA}^{-3}$
7244 reflections	$\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$

 \times 0.19 \times 0.11 mm

39049 measured reflections

 $R_{\rm int} = 0.049$

7244 independent reflections

6059 reflections with $I > 2\sigma(I)$

Table 1

Selected interatomic distances (Å).

 $Cg1 \cdots Cg3$ 3.8375 (16) $Cg2 \cdot \cdot \cdot Cg6^{i}$ 3.7641 (15) 3.7202 (14) 3.6887 (14) $Cg2 \cdot \cdot \cdot Cg4^{i}$ $Cg4 \cdot \cdot \cdot Cg5^{ii}$

Symmetry codes: (i) $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$. Cg1, Cg2, Cg3, Cg4, *Cg5*, and *Cg6* are the centroids of atoms N1/C1–C4/C12, N2/C7–C11, N3/C13–C16/C24, N4/C19-C23, C4-C7/C11-C12, and C16-C19/C23-C24, respectively.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3A\cdotsO8^{iii}$ $C9-H9A\cdotsO3^{iv}$ $C21-H21A\cdotsO3^{v}$	0.93 0.93 0.93	2.53 2.55 2.43	3.422 (3) 3.453 (3) 3.201 (3)	161 164 140
Symmetry codes: $-x + 1, -y, -z$.	(iii) $-x + \frac{1}{2}, y$	$v + \frac{1}{2}, -z + \frac{1}{2};$	(iv) $-x + 1, -y$	v, -z + 1; (v)

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank Universiti Sains Malaysia and the Malaysian Government for the research grants SAGA No. 304/PKIMIA/653010/A118 and FRGS No. 203/PKIMIA/ 671020. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2423).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Antsyshkina, A. S., Sadikov, G. G., Rodnikova, M. N., Mikhailichenko, A. I. & Nevzorova, L. V. (2002). *Russ. J. Inorg. Chem.* 47, 417–420.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Frechette, M., Butler, I. R., Hynes, R. & Detellier, C. (1992). *Inorg. Chem.* 31, 1650–1656.
- Kepert, D. L., Semenova, L. I., Sobolev, A. N. & White, A. H. (1996). Aust. J. Chem. 49, 1005–1008.
- Lin, Q.-Y. & Feng, Y.-L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 531-532.

- Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, m12–m14.
- Rybakov, V. B., Zakharov, V. N., Kamyshnyi, A. L., Aslanov, L. A. & Suisalu, A. P. (1991). *Russ. J. Coord. Chem.* 17, 1061–1064.
- Sadikov, G. G., Antsyshkina, A. S., Kuznetsova, N. A. & Rodnikova, M. N. (2006a). Kristallografiya (Crystallogr. Rep.), 51, 271–277.
- Sadikov, G. G., Antsyshkina, A. S., Kuznetsova, I. A. & Rodnikova, M. N. (2006b). Kristallografiya (Crystallogr. Rep.), 51, 47–52.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wei, D.-Y., Lin, J.-L. & Zheng, Y.-Q. (2002). J. Coord. Chem. 55, 1259– 1262.
- Xu, C.-J., Yang, H., Xie, F. & Guo, X.-Z. (2005). J. Alloys Compd, 392, 96–99.
- Zheng, Y.-Q., Zhou, L.-X., Lin, J.-L. & Zhang, S.-W. (2001). Z. Anorg. Allg. Chem. 627, 1643–1646.

Acta Cryst. (2008). E64, m1014-m1015 [doi:10.1107/S1600536808020655]

Tris(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)holmium(III)

E. Kusrini, M. I. Saleh, R. Kia and H.-K. Fun

Comment

1,10-Phenanthroline (Phen) has experienced an increasingly important role in the field of supramolecular chemistry as a ligand and sensitizer in different lanthanide complexes. The series of lanthanide nitrate complexes (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Yb and Lu) with the Phen ligand have previously been reported (Frechette *et al.*, 1992; Lin & Feng, 2003; Zheng *et al.*, 2001; Antsyshkina *et al.*, 2002; Sadikov *et al.*, 2006*a*,b; Rybakov *et al.*, 1991; Wei *et al.*, 2002; Kepert *et al.*, 1996; Liu *et al.*, 2007], while crystal structure of [Ho(Phen)₂(NO₃)₃] complex has not been reported in the literature. In these complexes, it is believed that the Phen ligand may displace the coordinated water molecules and increase the molecular rigidity to attain the high luminescence efficiency (Xu *et al.*, 2005). Almost all of the [Ln(Phen)₂(NO₃)₃] {Ln = La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb, Lu} complexes were crystallized in the monoclinic space group *C*2/*c*. In our study, the [Ho(Phen)₂(NO₃)₃] complex was obtained from a solution mixture containing 1,10-phenanthroline, tetraethylene glycol and holmium nitrate.

In the title compound (Fig. 1), four nitrogen atoms (from two phen ligands; N1, N2, N3, and N4) and six oxygen atoms from three bidentate nitrate groups (O1, O2; O4, O5; O7, O8) are coordinated to the central Ho^{III} ion. Bond lengths and angles have normal values (Allen *et al.*, 1987). The dihedral angle between the two phenanthroline ligands is 43.72 (13) °.

In the crystal structure, short intermolecular distances between the centroids of six-membered rings (Table 1) prove an existence of π - π interactions, which link the molecules into stacks extended in direction [10-1]. The crystal packing is further stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 2).

Experimental

The title compound was prepared by the reaction of tetraethylene glycol (0.207 g, 1.07 mmol), 1,10-phenanthroline (0.179, 1 mmol) and holmium nitrate (0.442 g, 1 mmol) in 20 ml H₂O. The solution was heated for 1 h at 60°C. The solution was filtrated and was covered with an aluminium foil to enable slow evaporation at room temperature. Brown crystals were obtained after 5 months with a yield of 80%. Anal. Calc. for. $[Ho(Phen)_2(NO_3)_3]$: C, 40.49; H, 2.25; N, 13.78. Found: C, 37.93; H, 2.25; N, 12.35%.

Refinement

The geometrically constrained hydrogen atoms were placed in calculated positions (C-H 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$. The highest residual peak [3.31 eÅ⁻³] is located 0.83 Å from Ho1 and the deepest hole [-1.08 eÅ⁻³] is located 2.04 Å from C15.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The H atoms have been omitted for clarity.

Tris(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)holmium(III)

Crystal data	
$[Ho(NO_3)_3(C_{12}H_8N_2)_2]$	$F_{000} = 1392$
$M_r = 711.37$	$D_{\rm x} = 1.900 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9346 reflections
a = 11.0049 (2) Å	$\theta = 2.2 - 32.1^{\circ}$
b = 17.7710 (3) Å	$\mu = 3.25 \text{ mm}^{-1}$
c = 12.9332 (2) Å	T = 100.0 (1) K
$\beta = 100.4830 \ (10)^{\circ}$	Block, brown
V = 2487.10 (7) Å ³	$0.34\times0.19\times0.11~mm$

$$Z = 4$$

Data collection

7244 independent reflections
6059 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.049$
$\theta_{\text{max}} = 30.0^{\circ}$
$\theta_{\min} = 2.0^{\circ}$
$h = -15 \rightarrow 15$
$k = -25 \rightarrow 25$
$l = -18 \rightarrow 18$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier mapLeast-squares matrix: fullHydrogen site location: inferred from neighbouring
sites $R[F^2 > 2\sigma(F^2)] = 0.031$ H-atom parameters constrained $wR(F^2) = 0.070$ $w = 1/[\sigma^2(F_0^2) + (0.0236P)^2 + 4.9031P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.004$
7244 reflections	$\Delta \rho_{\text{max}} = 3.31 \text{ e} \text{ Å}^{-3}$
371 parameters	$\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ho1	0.488774 (10)	0.175637 (6)	0.238530 (8)	0.01342 (3)
01	0.51495 (18)	0.04947 (10)	0.31894 (15)	0.0232 (4)
02	0.48440 (18)	0.05435 (10)	0.14900 (15)	0.0233 (4)
O3	0.5190 (2)	-0.05374 (11)	0.22803 (19)	0.0394 (6)
O4	0.66600 (16)	0.16813 (10)	0.39018 (13)	0.0183 (4)
O5	0.70134 (16)	0.13574 (10)	0.23748 (13)	0.0188 (4)
06	0.84805 (18)	0.12616 (12)	0.37481 (15)	0.0276 (5)
07	0.30817 (17)	0.16390 (10)	0.08994 (13)	0.0195 (4)
08	0.28298 (16)	0.12639 (10)	0.24356 (13)	0.0200 (4)
09	0.12801 (18)	0.12176 (13)	0.11134 (16)	0.0312 (5)
N1	0.35309 (19)	0.29166 (11)	0.22497 (15)	0.0160 (4)
N2	0.4282 (2)	0.21458 (12)	0.40627 (16)	0.0173 (4)
N3	0.6131 (2)	0.29709 (11)	0.25716 (15)	0.0171 (4)
N4	0.54335 (19)	0.22274 (11)	0.07176 (15)	0.0156 (4)
N5	0.5064 (2)	0.01456 (12)	0.23142 (19)	0.0238 (5)
N6	0.74234 (19)	0.14297 (12)	0.33588 (16)	0.0177 (4)
N7	0.2359 (2)	0.13717 (12)	0.14692 (17)	0.0189 (5)
C1	0.3141 (2)	0.32922 (14)	0.13647 (18)	0.0186 (5)
H1A	0.3194	0.3060	0.0730	0.022*
C2	0.2651 (3)	0.40222 (14)	0.1339 (2)	0.0221 (6)
H2A	0.2393	0.4265	0.0700	0.027*
C3	0.2558 (3)	0.43717 (15)	0.2259 (2)	0.0232 (6)
H3A	0.2261	0.4862	0.2254	0.028*
C4	0.2916 (2)	0.39856 (14)	0.3218 (2)	0.0200 (5)
C5	0.2779 (3)	0.42963 (15)	0.4216 (2)	0.0236 (6)

H5A	0.2468	0.4781	0.4248	0.028*
C6	0.3098 (3)	0.38902 (15)	0.5111 (2)	0.0229 (6)
H6A	0.2995	0.4100	0.5749	0.027*
C7	0.3588 (2)	0.31498 (14)	0.50970 (18)	0.0181 (5)
C8	0.3894 (2)	0.26962 (16)	0.60012 (19)	0.0221 (6)
H8A	0.3786	0.2878	0.6653	0.027*
C9	0.4350 (3)	0.19881 (16)	0.5915 (2)	0.0240 (6)
H9A	0.4528	0.1677	0.6502	0.029*
C10	0.4544 (2)	0.17361 (15)	0.49320 (19)	0.0210 (5)
H10A	0.4874	0.1258	0.4886	0.025*
C11	0.3779 (2)	0.28392 (14)	0.41332 (18)	0.0159 (5)
C12	0.3402 (2)	0.32587 (14)	0.31716 (18)	0.0161 (5)
C13	0.6460 (3)	0.33423 (14)	0.34675 (19)	0.0208 (5)
H13A	0.6407	0.3094	0.4091	0.025*
C14	0.6882 (3)	0.40881 (15)	0.3528 (2)	0.0267 (6)
H14A	0.7088	0.4327	0.4176	0.032*
C15	0.6986 (3)	0.44575 (15)	0.2625 (2)	0.0282 (6)
H15A	0.7247	0.4956	0.2648	0.034*
C16	0.6691 (3)	0.40757 (15)	0.1656 (2)	0.0234 (6)
C17	0.6835 (3)	0.44123 (16)	0.0676 (2)	0.0300 (7)
H17A	0.7114	0.4906	0.0669	0.036*
C18	0.6571 (3)	0.40208 (15)	-0.0241 (2)	0.0267 (6)
H18A	0.6685	0.4245	-0.0866	0.032*
C19	0.6119 (2)	0.32673 (14)	-0.02508 (18)	0.0185 (5)
C20	0.5850 (2)	0.28446 (15)	-0.11786 (19)	0.0206 (5)
H20A	0.5976	0.3047	-0.1814	0.025*
C21	0.5399 (2)	0.21275 (15)	-0.11353 (19)	0.0212 (6)
H21A	0.5237	0.1834	-0.1740	0.025*
C22	0.5182 (2)	0.18402 (14)	-0.01784 (19)	0.0185 (5)
H22A	0.4848	0.1360	-0.0167	0.022*
C23	0.5929 (2)	0.29317 (14)	0.06874 (18)	0.0163 (5)
C24	0.6252 (2)	0.33318 (14)	0.16655 (18)	0.0173 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ho1	0.01761 (5)	0.00975 (5)	0.01367 (5)	0.00001 (4)	0.00491 (4)	-0.00004 (4)
01	0.0251 (9)	0.0166 (9)	0.0260 (9)	-0.0010 (8)	-0.0006 (8)	0.0047 (7)
O2	0.0262 (9)	0.0146 (8)	0.0272 (9)	0.0017 (8)	-0.0001 (8)	-0.0017 (7)
O3	0.0416 (13)	0.0101 (9)	0.0596 (14)	0.0017 (9)	-0.0090 (11)	-0.0001 (9)
O4	0.0231 (8)	0.0178 (8)	0.0151 (7)	-0.0001 (7)	0.0063 (7)	-0.0008 (6)
O5	0.0203 (8)	0.0203 (9)	0.0159 (8)	-0.0017 (7)	0.0034 (7)	-0.0014 (7)
O6	0.0204 (9)	0.0305 (10)	0.0299 (10)	0.0005 (8)	-0.0006 (8)	0.0013 (8)
O7	0.0238 (9)	0.0178 (9)	0.0173 (8)	0.0003 (7)	0.0047 (7)	-0.0004 (6)
O8	0.0219 (9)	0.0208 (9)	0.0169 (8)	0.0005 (7)	0.0029 (7)	0.0022 (7)
O9	0.0176 (9)	0.0412 (12)	0.0325 (10)	-0.0039 (9)	-0.0015 (8)	-0.0013 (9)
N1	0.0212 (10)	0.0132 (9)	0.0143 (9)	0.0015 (8)	0.0050 (8)	0.0002 (7)
N2	0.0213 (10)	0.0147 (9)	0.0163 (9)	0.0045 (8)	0.0051 (8)	0.0024 (7)

N3	0.0238 (10)	0.0140 (9)	0.0143 (9)	-0.0035 (8)	0.0058 (8)	-0.0007 (7)
N4	0.0181 (9)	0.0133 (9)	0.0160 (9)	-0.0008 (8)	0.0047 (8)	-0.0026 (7)
N5	0.0199 (11)	0.0126 (10)	0.0362 (12)	0.0009 (8)	-0.0025 (10)	-0.0012 (9)
N6	0.0181 (10)	0.0150 (10)	0.0196 (9)	-0.0033 (8)	0.0024 (8)	-0.0004 (8)
N7	0.0206 (10)	0.0146 (10)	0.0215 (10)	0.0014 (8)	0.0037 (8)	-0.0003 (8)
C1	0.0277 (12)	0.0157 (11)	0.0129 (10)	0.0032 (10)	0.0046 (9)	0.0027 (9)
C2	0.0313 (14)	0.0172 (12)	0.0186 (11)	0.0058 (11)	0.0061 (10)	0.0057 (9)
C3	0.0304 (14)	0.0140 (11)	0.0254 (12)	0.0085 (11)	0.0059 (11)	0.0026 (9)
C4	0.0258 (13)	0.0128 (11)	0.0217 (11)	0.0033 (10)	0.0054 (10)	-0.0001 (9)
C5	0.0351 (14)	0.0155 (12)	0.0222 (12)	0.0037 (11)	0.0104 (11)	-0.0034 (9)
C6	0.0313 (14)	0.0216 (13)	0.0167 (11)	0.0016 (11)	0.0071 (10)	-0.0029 (9)
C7	0.0203 (11)	0.0200 (12)	0.0146 (10)	0.0000 (10)	0.0046 (9)	-0.0013 (9)
C8	0.0257 (13)	0.0308 (14)	0.0111 (10)	0.0019 (11)	0.0065 (9)	0.0003 (9)
C9	0.0263 (13)	0.0305 (14)	0.0162 (11)	0.0079 (11)	0.0062 (10)	0.0071 (10)
C10	0.0253 (12)	0.0213 (12)	0.0175 (10)	0.0076 (11)	0.0067 (9)	0.0059 (10)
C11	0.0166 (11)	0.0164 (11)	0.0156 (10)	0.0014 (9)	0.0054 (9)	-0.0001 (8)
C12	0.0212 (11)	0.0142 (10)	0.0136 (9)	0.0005 (10)	0.0051 (8)	0.0002 (8)
C13	0.0299 (13)	0.0179 (12)	0.0154 (10)	-0.0038 (10)	0.0066 (10)	-0.0028 (9)
C14	0.0443 (16)	0.0189 (12)	0.0177 (11)	-0.0097 (12)	0.0076 (11)	-0.0057 (10)
C15	0.0467 (17)	0.0165 (12)	0.0228 (12)	-0.0122 (12)	0.0105 (12)	-0.0060 (10)
C16	0.0356 (14)	0.0149 (12)	0.0216 (11)	-0.0057 (11)	0.0107 (11)	-0.0016 (9)
C17	0.0513 (18)	0.0183 (12)	0.0232 (12)	-0.0137 (13)	0.0138 (12)	-0.0031 (10)
C18	0.0425 (16)	0.0207 (13)	0.0195 (11)	-0.0093 (12)	0.0126 (11)	0.0004 (10)
C19	0.0228 (12)	0.0188 (11)	0.0149 (10)	-0.0023 (10)	0.0063 (9)	-0.0008 (9)
C20	0.0231 (12)	0.0236 (13)	0.0163 (10)	-0.0006 (11)	0.0070 (9)	0.0007 (9)
C21	0.0259 (13)	0.0252 (13)	0.0127 (10)	-0.0008 (11)	0.0040 (9)	-0.0054 (9)
C22	0.0236 (12)	0.0152 (11)	0.0176 (10)	-0.0030 (10)	0.0058 (9)	-0.0043 (9)
C23	0.0189 (11)	0.0149 (11)	0.0159 (10)	-0.0012 (9)	0.0055 (9)	-0.0015 (8)
C24	0.0217 (11)	0.0156 (11)	0.0148 (10)	-0.0028 (10)	0.0039 (9)	-0.0005 (8)
Geometric j	parameters (Å, °)					
Ho1—O8		2.4398 (18)	C4—	C12	1.40	4 (3)
Ho1—O2		2.4431 (18)	C4—	C5	1.43	6 (4)
Ho1—O5		2.4468 (18)	С5—	C6	1.35	6 (4)
Ho1—O1		2.4662 (18)	С5—	H5A	0.93	00
Ho1—N2		2.481 (2)	С6—	C7	1.42	3 (4)
Ho1—N4		2.487 (2)	С6—	H6A	0.93	00
Ho1—O4		2.5053 (17)	С7—	C8	1.41	0 (3)
Ho1—O7		2.5094 (17)	С7—	C11	1.41	3 (3)
Ho1—N1		2.533 (2)	C8—	С9	1.36	7 (4)
Ho1—N3		2.544 (2)	C8—	H8A	0.93	00
Ho1—N5		2.872 (2)	С9—	C10	1.40	1 (4)
Ho1—N7		2.901 (2)	С9—	H9A	0.93	00

C10—H10A

C11-C12

C13—C14

C14-C15

C13—H13A

1.279 (3)

1.265 (3)

1.223 (3)

1.270 (3)

1.277 (3)

01-N5

O2-N5

O3—N5

O4-N6

O5-N6

0.9300

1.445 (3)

1.402 (4)

1.362 (4)

0.9300

O6—N6	1.218 (3)	C14—H14A	0.9300
O7—N7	1.271 (3)	C15—C16	1.411 (4)
O8—N7	1.277 (3)	C15—H15A	0.9300
O9—N7	1.224 (3)	C16—C24	1.409 (3)
N1—C1	1.327 (3)	C16—C17	1.435 (4)
N1—C12	1.369 (3)	C17—C18	1.361 (4)
N2—C10	1.326 (3)	С17—Н17А	0.9300
N2—C11	1.361 (3)	C18—C19	1.428 (4)
N3—C13	1.325 (3)	C18—H18A	0.9300
N3—C24	1.363 (3)	C19—C20	1.401 (3)
N4—C22	1.333 (3)	C19—C23	1.401 (3)
N4—C23	1.369 (3)	C20—C21	1.373 (4)
C1—C2	1.403 (3)	C20—H20A	0.9300
C1—H1A	0.9300	C21—C22	1.399 (3)
C2—C3	1.362 (4)	C21—H21A	0.9300
C2—H2A	0.9300	C22—H22A	0.9300
C3—C4	1.410 (3)	C23—C24	1.438 (3)
С3—НЗА	0.9300		
Cg1···Cg3	3.8375 (16)	Cg2…Cg6 ⁱ	3.7641 (15)
Cg2…Cg4 ⁱ	3.7202 (14)	Cg4…Cg5 ⁱⁱ	3.6887 (14)
O8—Ho1—O2	75.99 (6)	O3—N5—Ho1	177.36 (19)
O8—Ho1—O5	142.12 (6)	O2—N5—Ho1	57.74 (12)
O2—Ho1—O5	71.22 (6)	O1—N5—Ho1	58.85 (12)
O8—Ho1—O1	72.57 (6)	O6—N6—O4	122.4 (2)
O2—Ho1—O1	52.30 (6)	O6—N6—O5	121.7 (2)
O5—Ho1—O1	72.57 (6)	O4—N6—O5	115.92 (19)
O8—Ho1—N2	71.23 (6)	O6—N6—Ho1	177.16 (17)
O2—Ho1—N2	132.47 (7)	O4—N6—Ho1	59.28 (11)
O5—Ho1—N2	119.67 (6)	O5—N6—Ho1	56.67 (11)
O1—Ho1—N2	85.08 (7)	O9—N7—O7	122.2 (2)
O8—Ho1—N4	121.04 (6)	O9—N7—O8	121.8 (2)
O2—Ho1—N4	82.70 (6)	O7—N7—O8	116.0 (2)
O5—Ho1—N4	73.19 (6)	O9—N7—Ho1	177.83 (18)
O1—Ho1—N4	130.06 (7)	O7—N7—Ho1	59.57 (11)
N2—Ho1—N4	144.11 (7)	O8—N7—Ho1	56.46 (12)
O8—Ho1—O4	123.66 (6)	N1—C1—C2	123.2 (2)
O2—Ho1—O4	105.63 (6)	N1—C1—H1A	118.4
O5—Ho1—O4	51.68 (6)	C2—C1—H1A	118.4
O1—Ho1—O4	66.85 (6)	C3—C2—C1	119.4 (2)
N2—Ho1—O4	67.99 (6)	С3—С2—Н2А	120.3
N4—Ho1—O4	114.86 (6)	C1—C2—H2A	120.3
O8—Ho1—O7	51.75 (6)	C2—C3—C4	119.6 (2)
O2—Ho1—O7	67.62 (6)	С2—С3—НЗА	120.2
O5—Ho1—O7	126.62 (6)	С4—С3—НЗА	120.2
O1—Ho1—O7	105.24 (6)	C12—C4—C3	117.2 (2)
N2—Ho1—O7	113.04 (6)	C12—C4—C5	119.7 (2)
N4—Ho1—O7	69.29 (6)	C3—C4—C5	123.1 (2)
O4—Ho1—O7	172.06 (6)	C6—C5—C4	120.6 (2)

O8—Ho1—N1	75.84 (6)	С6—С5—Н5А	119.7
O2—Ho1—N1	136.45 (6)	С4—С5—Н5А	119.7
O5—Ho1—N1	141.96 (6)	C5—C6—C7	121.4 (2)
O1—Ho1—N1	142.31 (7)	С5—С6—Н6А	119.3
N2—Ho1—N1	65.46 (6)	С7—С6—Н6А	119.3
N4—Ho1—N1	84.16 (7)	C8—C7—C11	117.2 (2)
O4—Ho1—N1	117.56 (6)	C8—C7—C6	123.5 (2)
O7—Ho1—N1	68.89 (6)	C11—C7—C6	119.3 (2)
O8—Ho1—N3	141.99 (7)	C9—C8—C7	119.7 (2)
O2—Ho1—N3	139.24 (7)	С9—С8—Н8А	120.2
O5—Ho1—N3	75.40 (6)	С7—С8—Н8А	120.2
O1—Ho1—N3	135.39 (6)	C8—C9—C10	119.2 (2)
N2—Ho1—N3	84.61 (7)	С8—С9—Н9А	120.4
N4—Ho1—N3	65.53 (6)	С10—С9—Н9А	120.4
O4—Ho1—N3	69.04 (6)	N2-C10-C9	123.2 (2)
O7—Ho1—N3	118.72 (6)	N2-C10-H10A	118.4
N1—Ho1—N3	67.42 (7)	C9—C10—H10A	118.4
O8—Ho1—N5	73.26 (6)	N2—C11—C7	122.7 (2)
O2—Ho1—N5	25.97 (6)	N2-C11-C12	117.8 (2)
O5—Ho1—N5	68.94 (6)	C7—C11—C12	119.5 (2)
O1—Ho1—N5	26.35 (6)	N1—C12—C4	123.2 (2)
N2—Ho1—N5	109.67 (7)	N1-C12-C11	117.5 (2)
N4—Ho1—N5	106.22 (7)	C4—C12—C11	119.3 (2)
O4—Ho1—N5	85.66 (6)	N3—C13—C14	123.7 (2)
O7—Ho1—N5	86.64 (6)	N3—C13—H13A	118.2
N1—Ho1—N5	148.39 (6)	C14—C13—H13A	118.2
N3—Ho1—N5	144.14 (7)	C15—C14—C13	119.1 (2)
O8—Ho1—N7	25.87 (6)	C15-C14-H14A	120.4
O2—Ho1—N7	70.36 (6)	C13—C14—H14A	120.4
O5—Ho1—N7	140.94 (6)	C14—C15—C16	119.3 (2)
O1—Ho1—N7	89.30 (6)	C14—C15—H15A	120.4
N2—Ho1—N7	91.85 (7)	C16—C15—H15A	120.4
N4—Ho1—N7	95.18 (6)	C24—C16—C15	117.8 (2)
O4—Ho1—N7	149.26 (6)	C24—C16—C17	119.5 (2)
O7—Ho1—N7	25.89 (6)	C15—C16—C17	122.7 (2)
N1—Ho1—N7	69.75 (6)	C18—C17—C16	121.1 (3)
N3—Ho1—N7	134.29 (6)	C18—C17—H17A	119.5
N5—Ho1—N7	79.49 (6)	С16—С17—Н17А	119.5
N5—O1—Ho1	94.80 (14)	C17—C18—C19	120.4 (2)
N5—O2—Ho1	96.29 (14)	C17—C18—H18A	119.8
N6—O4—Ho1	94.87 (13)	C19—C18—H18A	119.8
N6	97.48 (14)	C20—C19—C23	118.2 (2)
N7—O7—Ho1	94.54 (13)	C20-C19-C18	122.0 (2)
N7—O8—Ho1	97.67 (14)	C23—C19—C18	119.9 (2)
C1—N1—C12	117.3 (2)	C21—C20—C19	119.0 (2)
C1—N1—Ho1	124.28 (16)	C21—C20—H20A	120.5
C12—N1—Ho1	117.04 (15)	С19—С20—Н20А	120.5
C10—N2—C11	118.0 (2)	C20—C21—C22	119.8 (2)
C10—N2—Ho1	122.42 (17)	C20—C21—H21A	120.1

C11—N2—Ho1	119.24 (15)	C22—C21—H21A	120.1
C13—N3—C24	117.6 (2)	N4—C22—C21	122.6 (2)
C13—N3—Ho1	124.18 (17)	N4—C22—H22A	118.7
C24—N3—Ho1	116.90 (15)	C21—C22—H22A	118.7
C22—N4—C23	117.9 (2)	N4—C23—C19	122.5 (2)
C22—N4—Ho1	122.37 (16)	N4—C23—C24	117.6 (2)
C23—N4—Ho1	119.53 (15)	C19—C23—C24	120.0 (2)
O3—N5—O2	122.0 (2)	N3—C24—C16	122.4 (2)
O3—N5—O1	121.5 (2)	N3—C24—C23	118.5 (2)
O2—N5—O1	116.5 (2)	C16—C24—C23	119.1 (2)
O8—Ho1—O1—N5	87.34 (14)	O5—Ho1—N5—O2	-90.17 (15)
O2—Ho1—O1—N5	1.82 (13)	O1—Ho1—N5—O2	176.7 (2)
O5—Ho1—O1—N5	-77.59 (14)	N2—Ho1—N5—O2	154.63 (14)
N2—Ho1—O1—N5	159.19 (15)	N4—Ho1—N5—O2	-25.95 (15)
N4—Ho1—O1—N5	-28.91 (17)	O4—Ho1—N5—O2	-140.60 (15)
O4—Ho1—O1—N5	-132.67 (15)	O7—Ho1—N5—O2	41.35 (15)
O7—Ho1—O1—N5	46.63 (15)	N1—Ho1—N5—O2	79.75 (19)
N1—Ho1—O1—N5	121.68 (15)	N3—Ho1—N5—O2	-96.44 (16)
N3—Ho1—O1—N5	-123.61 (14)	N7—Ho1—N5—O2	66.44 (14)
N7—Ho1—O1—N5	67.27 (14)	O8—Ho1—N5—O1	-84.41 (14)
O8—Ho1—O2—N5	-80.46 (15)	O2—Ho1—N5—O1	-176.7 (2)
O5—Ho1—O2—N5	80.28 (14)	O5—Ho1—N5—O1	93.11 (14)
O1—Ho1—O2—N5	-1.84 (13)	N2—Ho1—N5—O1	-22.08 (16)
N2—Ho1—O2—N5	-33.15 (18)	N4—Ho1—N5—O1	157.34 (14)
N4—Ho1—O2—N5	154.94 (15)	O4—Ho1—N5—O1	42.69 (14)
O4—Ho1—O2—N5	41.09 (15)	O7—Ho1—N5—O1	-135.36 (15)
O7—Ho1—O2—N5	-134.50 (16)	N1—Ho1—N5—O1	-96.96 (17)
N1—Ho1—O2—N5	-131.53 (14)	N3—Ho1—N5—O1	86.84 (18)
N3—Ho1—O2—N5	116.95 (15)	N7—Ho1—N5—O1	-110.28 (15)
N7—Ho1—O2—N5	-106.88 (15)	Ho1—O4—N6—O6	-177.3 (2)
08—Ho1—O4—N6	131.73 (13)	Ho1—O4—N6—O5	2.2 (2)
O2—Ho1—O4—N6	48.37 (14)	Ho1—O5—N6—O6	177.3 (2)
O5—Ho1—O4—N6	-1.31 (12)	Ho1—O5—N6—O4	-2.2 (2)
01—Ho1—O4—N6	84.26 (14)	08—Ho1—N6—O6	60 (4)
N2—Ho1—O4—N6	178.40 (15)	O2—Ho1—N6—O6	-7(4)
N4—Ho1—O4—N6	-40.73(14)	05—Ho1—N6—O6	-55 (4)
07—Ho1—O4—N6	79.4 (4)	O1-Ho1-N6-O6	43 (4)
N1 - Ho1 - O4 - N6	-137.35(13)	N2—Ho1—N6—O6	126 (4)
N3—Ho1—O4—N6	-88 94 (14)	N4—Ho1—N6—O6	-89 (4)
N5—Ho1—O4—N6	65 15 (13)	$04 - H_0 1 - N_0 - 0_0$	127 (4)
N7—Ho1—O4—N6	126 10 (15)	$07 - H_0 1 - N_0 - 0_0$	-36(4)
Ω_{8} —Ho1— Ω_{5} —N6	-9643(15)	$N1 - H_0 1 - N6 - O6$	-175 (4)
Ω_{2} —Ho1— Ω_{2} —N6	-127.84(14)	N3—Ho1—N6—O6	-151(4)
Ω_1 —H Ω_1 — Ω_5 —N6	-72.61(13)	N5—Ho1—N6—O6	16 (4)
N_2 —Ho1—O5—N6	(15)	N7—Ho1—N6—O6	23 (4)
N4—Ho1—O5—N6	144 30 (14)	$08 - H_01 - N6 - 04$	-67 52 (16)
$04 - H_01 - 05 - N_0$	1 30 (12)	Ω^2 —Ho1—N6— Ω^4	-133 92 (13)
$07 - H_01 - 05 - N6$	-168 92 (12)	05_Ho1_N6_04	133.72(13)
$N_1 = H_0 = 0.05 = N_0^{-100}$	88 27 (15)	$01 - H_0 1 - N6 - 04$	-84 47 (12)
INI-IIUI-05-INU	00.27 (13)	01-1101-100-04	04.47 (13)

N3—Ho1—O5—N6	75.92 (13)	N2—Ho1—N6—O4	-1.49 (14)
N5—Ho1—O5—N6	-100.29 (14)	N4—Ho1—N6—O4	143.57 (13)
N7—Ho1—O5—N6	-138.58 (13)	O7—Ho1—N6—O4	-163.38 (13)
O8—Ho1—O7—N7	1.41 (12)	N1—Ho1—N6—O4	57.33 (16)
O2—Ho1—O7—N7	90.91 (14)	N3—Ho1—N6—O4	81.45 (13)
O5—Ho1—O7—N7	133.20 (13)	N5—Ho1—N6—O4	-110.82 (14)
O1—Ho1—O7—N7	53.82 (14)	N7—Ho1—N6—O4	-104.08 (17)
N2—Ho1—O7—N7	-37.28 (15)	O8—Ho1—N6—O5	114.82 (14)
N4—Ho1—O7—N7	-178.58 (15)	O2—Ho1—N6—O5	48.43 (14)
O4—Ho1—O7—N7	58.5 (5)	O1—Ho1—N6—O5	97.88 (14)
N1—Ho1—O7—N7	-86.90 (14)	N2—Ho1—N6—O5	-179.14 (13)
N3—Ho1—O7—N7	-133.98 (13)	N4—Ho1—N6—O5	-34.08 (14)
N5—Ho1—O7—N7	72.68 (14)	O4—Ho1—N6—O5	-177.7 (2)
O2—Ho1—O8—N7	-73.77 (14)	O7—Ho1—N6—O5	19.0 (2)
O5—Ho1—O8—N7	-104.34 (14)	N1—Ho1—N6—O5	-120.32 (14)
O1—Ho1—O8—N7	-128.16 (14)	N3—Ho1—N6—O5	-96.20 (14)
N2—Ho1—O8—N7	141.16 (15)	N5—Ho1—N6—O5	71.52 (14)
N4—Ho1—O8—N7	-1.41 (16)	N7—Ho1—N6—O5	78.27 (19)
O4—Ho1—O8—N7	-173.41 (12)	Ho1—O7—N7—O9	178.5 (2)
O7—Ho1—O8—N7	-1.41 (12)	Ho1—O7—N7—O8	-2.4 (2)
N1—Ho1—O8—N7	72.67 (14)	Ho1—O8—N7—O9	-178.4 (2)
N3—Ho1—O8—N7	87.73 (16)	Ho1—O8—N7—O7	2.4 (2)
N5—Ho1—O8—N7	-100.58 (14)	O8—Ho1—N7—O9	39 (5)
O8—Ho1—N1—C1	-103.3 (2)	O2—Ho1—N7—O9	137 (5)
O2—Ho1—N1—C1	-52.2 (2)	O5—Ho1—N7—O9	148 (5)
O5—Ho1—N1—C1	73.7 (2)	O1—Ho1—N7—O9	87 (5)
O1—Ho1—N1—C1	-137.06 (19)	N2—Ho1—N7—O9	2(5)
N2—Ho1—N1—C1	-178.9 (2)	N4—Ho1—N7—O9	-142 (5)
N4—Ho1—N1—C1	20.7 (2)	O4—Ho1—N7—O9	50 (5)
O4—Ho1—N1—C1	135.79 (19)	O7—Ho1—N7—O9	-144 (5)
O7—Ho1—N1—C1	-49.29 (19)	N1—Ho1—N7—O9	-61 (5)
N3—Ho1—N1—C1	86.6 (2)	N3—Ho1—N7—O9	-82 (5)
N5—Ho1—N1—C1	-90.9 (2)	N5—Ho1—N7—O9	112 (5)
N7—Ho1—N1—C1	-77.0 (2)	O8—Ho1—N7—O7	-177.5 (2)
O8—Ho1—N1—C12	90.21 (17)	O2—Ho1—N7—O7	-79.01 (13)
O2—Ho1—N1—C12	141.32 (16)	O5—Ho1—N7—O7	-68.22 (16)
O5—Ho1—N1—C12	-92.77 (19)	O1—Ho1—N7—O7	-128.85 (13)
O1—Ho1—N1—C12	56.5 (2)	N2—Ho1—N7—O7	146.10 (13)
N2—Ho1—N1—C12	14.67 (16)	N4—Ho1—N7—O7	1.33 (14)
N4—Ho1—N1—C12	-145.71 (18)	O4—Ho1—N7—O7	-166.69 (12)
O4—Ho1—N1—C12	-30.66 (19)	N1—Ho1—N7—O7	83.15 (13)
O7—Ho1—N1—C12	144.26 (19)	N3—Ho1—N7—O7	61.82 (16)
N3—Ho1—N1—C12	-79.81 (17)	N5—Ho1—N7—O7	-104.24 (14)
N5—Ho1—N1—C12	102.60 (19)	O2—Ho1—N7—O8	98.44 (14)
N7—Ho1—N1—C12	116.57 (18)	O5—Ho1—N7—O8	109.23 (15)
O8—Ho1—N2—C10	91.0 (2)	O1—Ho1—N7—O8	48.61 (14)
O2—Ho1—N2—C10	42.1 (2)	N2—Ho1—N7—O8	-36.45 (14)
O5—Ho1—N2—C10	-49.0 (2)	N4—Ho1—N7—O8	178.79 (14)
O1—Ho1—N2—C10	17.7 (2)	O4—Ho1—N7—O8	10.8 (2)

N4—Ho1—N2—C10	-151.70 (18)	O7—Ho1—N7—O8	177.5 (2)
O4—Ho1—N2—C10	-49.29 (19)	N1—Ho1—N7—O8	-99.39 (14)
O7—Ho1—N2—C10	122.2 (2)	N3—Ho1—N7—O8	-120.72 (14)
N1—Ho1—N2—C10	173.6 (2)	N5—Ho1—N7—O8	73.22 (14)
N3—Ho1—N2—C10	-118.8 (2)	C12—N1—C1—C2	2.3 (4)
N5—Ho1—N2—C10	27.3 (2)	Ho1—N1—C1—C2	-164.1 (2)
N7—Ho1—N2—C10	106.8 (2)	N1—C1—C2—C3	-0.3 (4)
O8—Ho1—N2—C11	-96.21 (18)	C1—C2—C3—C4	-2.1 (4)
O2—Ho1—N2—C11	-145.08 (16)	C2—C3—C4—C12	2.4 (4)
O5—Ho1—N2—C11	123.82 (17)	C2—C3—C4—C5	-176.2 (3)
O1—Ho1—N2—C11	-169.45 (18)	C12—C4—C5—C6	-0.9 (4)
N4—Ho1—N2—C11	21.1 (2)	C3—C4—C5—C6	177.7 (3)
O4—Ho1—N2—C11	123.55 (19)	C4—C5—C6—C7	0.6 (4)
O7—Ho1—N2—C11	-64.97 (19)	C5—C6—C7—C8	-177.8 (3)
N1—Ho1—N2—C11	-13.61 (17)	C5—C6—C7—C11	1.8 (4)
N3—Ho1—N2—C11	54.00 (18)	C11—C7—C8—C9	-0.2 (4)
N5—Ho1—N2—C11	-159.81 (17)	C6—C7—C8—C9	179.4 (3)
N7—Ho1—N2—C11	-80.32 (18)	C7—C8—C9—C10	2.2 (4)
O8—Ho1—N3—C13	69.2 (2)	C11—N2—C10—C9	-1.2 (4)
O2—Ho1—N3—C13	-138.88 (19)	Ho1—N2—C10—C9	171.8 (2)
O5—Ho1—N3—C13	-103.1 (2)	C8—C9—C10—N2	-1.6 (4)
O1—Ho1—N3—C13	-57.9 (2)	C10-N2-C11-C7	3.3 (4)
N2—Ho1—N3—C13	19.4 (2)	Ho1—N2—C11—C7	-169.83 (18)
N4—Ho1—N3—C13	179.0 (2)	C10-N2-C11-C12	-175.1 (2)
O4—Ho1—N3—C13	-49.0 (2)	Ho1—N2—C11—C12	11.7 (3)
O7—Ho1—N3—C13	132.8 (2)	C8—C7—C11—N2	-2.7 (4)
N1—Ho1—N3—C13	85.1 (2)	C6-C7-C11-N2	177.7 (2)
N5—Ho1—N3—C13	-97.1 (2)	C8—C7—C11—C12	175.7 (2)
N7—Ho1—N3—C13	106.8 (2)	C6-C7-C11-C12	-3.9 (4)
O8—Ho1—N3—C24	-97.43 (19)	C1—N1—C12—C4	-1.9 (4)
O2—Ho1—N3—C24	54.5 (2)	Ho1—N1—C12—C4	165.5 (2)
O5—Ho1—N3—C24	90.20 (18)	C1—N1—C12—C11	177.5 (2)
O1—Ho1—N3—C24	135.39 (17)	Ho1—N1—C12—C11	-15.1 (3)
N2—Ho1—N3—C24	-147.22 (18)	C3—C4—C12—N1	-0.4 (4)
N4—Ho1—N3—C24	12.32 (17)	C5-C4-C12-N1	178.3 (2)
O4—Ho1—N3—C24	144.31 (19)	C3—C4—C12—C11	-179.8 (2)
O7—Ho1—N3—C24	-33.9 (2)	C5-C4-C12-C11	-1.1 (4)
N1—Ho1—N3—C24	-81.59 (18)	N2-C11-C12-N1	2.6 (3)
N5—Ho1—N3—C24	96.2 (2)	C7-C11-C12-N1	-175.9 (2)
N7—Ho1—N3—C24	-59.9 (2)	N2-C11-C12-C4	-178.0 (2)
O8—Ho1—N4—C22	-47.9 (2)	C7—C11—C12—C4	3.5 (4)
O2—Ho1—N4—C22	20.90 (19)	C24—N3—C13—C14	2.2 (4)
O5—Ho1—N4—C22	93.42 (19)	Ho1—N3—C13—C14	-164.4 (2)
O1—Ho1—N4—C22	44.9 (2)	N3-C13-C14-C15	-1.1 (5)
N2—Ho1—N4—C22	-148.90 (18)	C13—C14—C15—C16	-1.4 (5)
O4—Ho1—N4—C22	124.79 (19)	C14—C15—C16—C24	2.5 (4)
O7—Ho1—N4—C22	-47.88 (19)	C14—C15—C16—C17	-176.8 (3)
N1—Ho1—N4—C22	-117.5 (2)	C24—C16—C17—C18	-0.9 (5)
N3—Ho1—N4—C22	174.7 (2)	C15-C16-C17-C18	178.4 (3)

N5—Ho1—N4—C22	32.0 (2)	C16—C17—C18—C19	1.2 (5)	
N7—Ho1—N4—C22	-48.50 (19)	C17—C18—C19—C20	-179.3 (3)	
O8—Ho1—N4—C23	127.24 (17)	C17—C18—C19—C23	1.0 (4)	
O2—Ho1—N4—C23	-163.98 (18)	C23—C19—C20—C21	0.9 (4)	
O5—Ho1—N4—C23	-91.46 (18)	C18—C19—C20—C21	-178.9 (3)	
O1—Ho1—N4—C23	-139.93 (16)	C19—C20—C21—C22	1.8 (4)	
N2—Ho1—N4—C23	26.2 (2)	C23—N4—C22—C21	-0.3 (4)	
O4—Ho1—N4—C23	-60.09 (19)	Ho1-N4-C22-C21	174.89 (19)	
O7—Ho1—N4—C23	127.24 (18)	C20-C21-C22-N4	-2.2 (4)	
N1—Ho1—N4—C23	57.63 (18)	C22—N4—C23—C19	3.2 (4)	
N3—Ho1—N4—C23	-10.19 (17)	Ho1—N4—C23—C19	-172.13 (19)	
N5—Ho1—N4—C23	-152.84 (17)	C22—N4—C23—C24	-177.2 (2)	
N7—Ho1—N4—C23	126.62 (17)	Ho1—N4—C23—C24	7.5 (3)	
Ho1-O2-N5-O3	-176.9 (2)	C20-C19-C23-N4	-3.5 (4)	
Ho1-O2-N5-O1	3.1 (2)	C18—C19—C23—N4	176.3 (2)	
Ho1-01-N5-03	176.9 (2)	C20-C19-C23-C24	176.9 (2)	
Ho1-01-N5-02	-3.1 (2)	C18—C19—C23—C24	-3.4 (4)	
O8—Ho1—N5—O3	178 (100)	C13—N3—C24—C16	-0.8 (4)	
O2—Ho1—N5—O3	85 (4)	Ho1—N3—C24—C16	166.8 (2)	
O5—Ho1—N5—O3	-5(4)	C13—N3—C24—C23	178.5 (2)	
O1—Ho1—N5—O3	-98 (4)	Ho1—N3—C24—C23	-13.9 (3)	
N2—Ho1—N5—O3	-120 (4)	C15—C16—C24—N3	-1.5 (4)	
N4—Ho1—N5—O3	59 (4)	C17—C16—C24—N3	177.8 (3)	
O4—Ho1—N5—O3	-55 (4)	C15—C16—C24—C23	179.2 (3)	
O7—Ho1—N5—O3	127 (4)	C17—C16—C24—C23	-1.5 (4)	
N1—Ho1—N5—O3	165 (4)	N4—C23—C24—N3	4.6 (4)	
N3—Ho1—N5—O3	-11 (4)	C19—C23—C24—N3	-175.7 (2)	
N7—Ho1—N5—O3	152 (4)	N4—C23—C24—C16	-176.1 (2)	
O8—Ho1—N5—O2	92.30 (15)	C19—C23—C24—C16	3.6 (4)	
Summatry adds: (i) $x=2/2$ $\rightarrow =1/2$ $z=1/2$ (ii) $x=1/2$ $\rightarrow =1/2$ $z=2/2$				

Symmetry codes: (i) x-3/2, -y-1/2, z-1/2; (ii) x-1/2, -y-1/2, z-3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \mathbf{H} \cdots \!\!\!-\!$
C1—H1A···O7	0.93	2.54	2.997 (3)	111
C3—H3A···O8 ⁱⁱⁱ	0.93	2.53	3.422 (3)	161
C9—H9A···O3 ^{iv}	0.93	2.55	3.453 (3)	164
C13—H13A…O4	0.93	2.54	3.005 (3)	111
C21—H21A····O3 ^v	0.93	2.43	3.201 (3)	140
C22—H22A…O2	0.93	2.59	3.224 (3)	126

Symmetry codes: (iii) -x+1/2, y+1/2, -z+1/2; (iv) -x+1, -y, -z+1; (v) -x+1, -y, -z.

